
Week 9 Thursday Notes

Andrew Sack

March 4, 2021

Today we will do some more practice in problem solving together by doing past basic quali-
fying exam problems.

1 Fall 2017 Problem 6

For each of the following three fields F (separately), is it true that every symmetric matrix
A ∈M2×2(F ) is diagonalizable?

2 pts For F = R

3 pts For F = C

5 pts For F = F3 = Z/3Z, the field with 3 elements.

Supply proofs/counterexamples (or cite the relevant theorems) for all parts of this problem.

1.1 Part (a)

This is true by the spectral theorem.

1.2 Part (b)

We know that the complex spectral theorem applies for Hermitian matrices, that is, when a
matrix is equal to its conjugate transpose. However, a symmetric matrix is one that is equal
to its transpose. Then we probably should suspect that this is not true.

This suggests that we should test out a matrix that is equal to its own transpose, but not
its conjugate transpose.
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Note: We should at least try out a few examples, as a matrix like

(
i 0
0 i

)
certainly symmetric

and diagonalizable, but is not Hermitian.

Let us test out

(
0 i
i 0

)
. This has characteristic polynomial z2− i2 = z2 +1, so it has distinct

eigenvalues and is diagonalizable.

Let us instead test out

(
1 i
i 1

)
. This has characteristic polynomial (z−1)2−i2 = z2−2z+2,

which also has two distinct roots. Hmmm, maybe we should try to engineer a counterexample
instead.

If we want our matrix to not be diagonalizable, its characteristic polynomial should at the
very least have only 1 root with multiplicity 2.

Generically, our matrix looks like

(
a b
b c

)
, so it has characteristic polynomial (z − a)(z −

c)− b2 = z2 − (a+ c)z + ac− b2.
If there is only one eigenvalue λ, then the characteristic polynomial should also be of the
form (z − λ)2 = z2 − 2λ+ λ2.

Perhaps we massage this to get us a characteristic polynomial of z2 − 2z + 1. A reasonable
guess to achieve this would be to start by taking a = c = 1. This gives us z2 − 2z + 1− b2,
so we need b2 = 0, but b = 0 makes the matrix diagonal.
Perhaps instead we can take a = 2, c = 0. Then we get z2 − 2z − b2, so we want b2 = −1, so
we can take b = i.

Let us test the matrix M =

(
2 i
i 0

)
.

As we just calculated, this has characteristic polynomial z2 − 2z + 1, so its only eigenvalue
is 1. However, observe that if a matrix is diagonalizable and has its only eigenvalue equal to
1, then it is the identity, which M is not.

This is a problem solving technique I like to call “educated guess and check.” We make a
guess, but not just a completely random guess. As we say, our initial completely random
guesses didn’t work out. In fact, almost all random guess we could make would not work
out.
Instead, we can deduce properties that a counterexample must have and try to find one
within that space of possibility.

1.3 Part (c)

Generically, a 2× 2 symmetric matrix with entries in F3, looks like

(
a b
b c

)
.

In this case, we can take the following strategy: There are only 27 such matrices, so we can
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test them all. In fact, when b = 0, the matrix is already diagonal, so we only need to check
18 matrices.

However, we can also take an approach like in part (b).

Let us hunt for a counterexample or otherwise exhaust all possibilities:

Assume b 6= 0. Then the characteristic polynomial is (z−a)(z−c)−b2 = z2−(a+c)z+ac−b2.

As b 6= 0, b = 1 or 2, which in either case tells us b2 = 1.
This is also a useful fact for another reason: not every polynomial over F3 has root. In
particular, z2 − 2 does not have a root.
If we can arrange for the characteristic polynomial to be equal to z2 − 2, then F3 will have
no eigenvalues, hence no eigenvectors and hence certainly can’t have a basis of eigenvectors.

Then we want a+ c = 0 and ac− b2 = ac− 1 = −2.
Then a = −c and ac = −1, so −a2 = −1. Then a2 = 1, so take a = 1 or a = 2. If we take
a = 1, we can take c = 2 to get the characteristic polynomial as desired (with b = 1 or 2)

Hence

(
1 1
1 2

)
is not diagonalizable.

1.4 Final Thoughts

Here is a potentially useful fact:

Observe that if there is a counterexample, then it must have only 1 eigenvalue. Furthermore,
a diagonalizable matrix with only 1 eigenvalue λ is similar to λI, so is equal to AλIA−1 = λI.

Hence we were really looking for matrices with 1 eigenvalue that were not already diagonal.

2 Fall 2015 Problem 9

Let A be a n× n real matrix such that AT = −A. Prove that detA ≥ 0.

Andrew’s hint: Use the fact that detA is equal to the product of the (complex) eigenvalues
of A counting multiplicity.

2.1 Solution

View A as a complex matrix and let v be an eigenvector of A with eigenvalue λ = a + bi
with a, b ∈ R.
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Then

λ〈v, v〉 = 〈λv, v〉
= 〈Av, v〉
= 〈v,A∗v〉
= 〈v,ATv〉 (As A is a real matrix)

= 〈v,−Av〉
= 〈v,−λv〉
= −λ̄〈v, v〉

As v 6= 0, 〈v, v〉 6= 0 so λ = −λ̄.

Hence a+ bi = −a+ bi so a = 0.

Hence the only eigenvalues of AA are 0 or purely imaginary.

As A is a real matrix, the characteristic polynomial of A has real coefficients. Hence it either
has 0 as an eigenvalue (in which case detA = 0) or its eigenvalues come in conjugate pairs
bi and − bi with b ∈ R.

The product of one of these conjugate pairs is b2, so the product of all conjugate pairs (which
will be the determinant) is positive.

3 Fall 2014 Problem 11

This is a cute problem:

Let A be a 4 × 4 matrix with integer entries such that A has 4 distinct real eigenvalues
λ1 > λ2 > λ3 > λ4. Prove that λ21 + λ22 + λ23 + λ24 ∈ Z.

3.1 Solution

This is a cute problem to which I have a cute solution.

The characteristic polynomial χ(zI − A) = (z − λ1)(z − λ2)(z − λ3)(z − λ4) has integer
coefficients.

Expanding out this is: z4−(λ1+λ2+λ3+λ4)z
3+(λ1λ2+λ1λ3+λ2λ3+λ3λ4)z

2−(∗)z+λ1λ2λ3λ4
where (∗) is whatever the coefficient of that term is.

Hence λ1 + λ2 + λ3 + λ4 ∈ Z and (λ1λ2 + λ1λ3 + λ2λ3 + λ3λ4) ∈ Z.

Then Z 3 (λ1 + λ2 + λ3 + λ4)
2 = λ21 + λ22 + λ23 + λ24 + 2(λ1λ2 + λ1λ3 + λ2λ3 + λ3λ4).
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Hence λ21 + λ22 + λ23 + λ24 = λ21 + λ22 + λ23 + λ24 + 2(λ1λ2 + λ1λ3 + λ2λ3 + λ3λ4) − 2(λ1λ2 +
λ1λ3 + λ2λ3 + λ3λ4) ∈ Z.
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