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More on Dual Spaces will be discussed in the extra lecture this week.

Today I will be relating various topics talked about in lecture to what they mean for matrices
and working out some examples.

1 Direct Sums

Recall that we say a vector space V is a direct sum of subspaces U and W if V = U +
W and U ∩W = {0} and we write V = U ⊕W .

For homework you will show that there is a nice isomorphism between this (called the internal
direct product) and the external direct product defined by U ⊕W := U ×W with vector
addition and scalar multiplication defined term-wise.

We say that a linear operator T : V → V splits over the internal direct sum V = U ⊕W if
T (U) ⊂ U and T (W ) ⊂ W .

Alternatively, given linear operators S : U → U and T : V → V , there is a split linear
operator S ⊕ T : U ⊕ V → U ⊕ V given by S ⊕ T (u, v) = (S(u), T (v)).

Furthermore, this operation commutes with the isomorphism between internal and external
direct products.

What does this mean for matrices?

Let β = {u1, ..., um} be a basis for U and γ = {wm+1, ..., wn} be a basis for W .
Then β ∪ γ is a basis for V = U ⊕W .

Let T : V → V be split over the direct sum.

What does the matrix [T ]β∪γ→β∪γ look like?

Well, observe that for any ui ∈ β, T (ui) ∈ U , so it has non-zero components only in β.
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Then the i-th column corresponding to the coordinates of T (ui) has 0s in the m + 1, ..., n
coordinates.
Likewise for any wi ∈ γ, T (wi) ∈ W so it has non-zero components only in γ. Then the first
m coordinates of the i-th column are all 0.

This gives us a so-called “block diagonal” matrix. That is outside of the upper left m ×m
block and bottom right m − n ×m − n block of the matrix, it is all 0s. Furthermore, the
upper left block is [T |U ]β→β and the bottom right block is [T |W ]γ→γ.

Let’s consider an example.

Consider the transformation T : R4 → R4 given by

T


w
x
y
z

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



w
x
y
z


(This takes a vector and returns it with its coordinates in reverse order.)

Let U = Span




1
0
0
0

 ,


0
0
0
1


 and V = Span




0
1
0
0

 ,


0
0
1
0




We see that T exchanges the basis vectors of U so T (U) = U and similarly T (V ) = V so T
splits over U and V .

Indeed, let β =




1
0
0
0

 ,


0
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0




Then [T ]β→β =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



w
x
y
z



2 Eigenvalues and Eigenvectors

From class you were told that an eigenvector of a linear transformation T : V → V is a non-
zero vector v ∈ V such that Tv = λv for some λ ∈ F . λ is called the eigenvalue associated
to v.

Equivalently, Tv − λv = (T − λI)v = 0. Then λ ∈ F is an eigenvalue if and only if
ker(T − λI) 6= 0.
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With respect to any basis, λI is always the same matrix. Then given a basis β, we can detect
if λ is an eigenvalue of T by seeing if [T ]β→β − λI is invertible or not, or equivalently check
if det([T ]β→β − λI) = 0.

How do we find these eigenvalues? Well they correspond precisely to the values of z such
that det(zI − [T ]β→β) = 0. Conveniently, by cofactor expansion this is a polynomial in z, so
we have reduced checking if λ is an eigenvalue of T to checking if it is the root of a particular
polynomial.

We define the characteristic polynomial by

χT (z) := det(zI − T )

Note: This is different from the minimal polynomial defined in class.

3 Diagonalizable Transformations

Recall that a linear operator T : V → V is diagonalizable if T has a basis of eigenvectors.

What does this mean with respect to matrices? Let T : V → V and β = {v1, ..., vn} be a
basis of eigenvectors where Tvi = λvi.

What does [T ]β→β look like? As Tvi = λvi, the (i, i) entry in [T ]β→β is λi and all other
entries in the column are 0. Then [T ]β→β.

We saw last week that given some other basis γ (not necessarily of eigenvectors), [T ]β→β is
similar to [T ]γ→γ.

We say that a matrix is diagonalizable if it is similar to a diagonal matrix. Diagonalizable
matrices exactly correspond to diagonalizable transformations.

Let us consider an example:

Take T : R2 → R2 given by T

(
x
y

)
=

(
0 1
1 0

)(
x
y

)
.

We claim that T is diagonalizable.

First we should find the eigenvectors of T .

Let M =

(
0 1
1 0

)
.

det

(
zI −

(
0 1
1 0

))
= det

(
z −1
−1 z

)
= z2 − 1 = (z + 1)(z − 1)
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Then χT (z) has roots 1 and − 1. We saw in class that as these eigenvalues are distinct, T
is diagonalizable, however if we are not convinced, let us find a basis of eigenvectors.

We want to find a vector in ker(I −M) = ker

(
1 −1
−1 1

)
and a vector in ker(−I −M) =(

−1 −1
−1 −1

)

For the first case we can take

(
1
1

)
and the second we can take

(
1
−1

)
.

These are linearly independent, so T is diagonalizable.

Furthermore, observe that

(
1 0
0 −1

)
=

(
1 1
1 −1

)−1(
0 1
1 0

)(
1 1
1 −1

)

This actually shows that the first matrix of today


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 is diagonalizable, because

it is similar to


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 whose blocks are diagonalizable.

4


