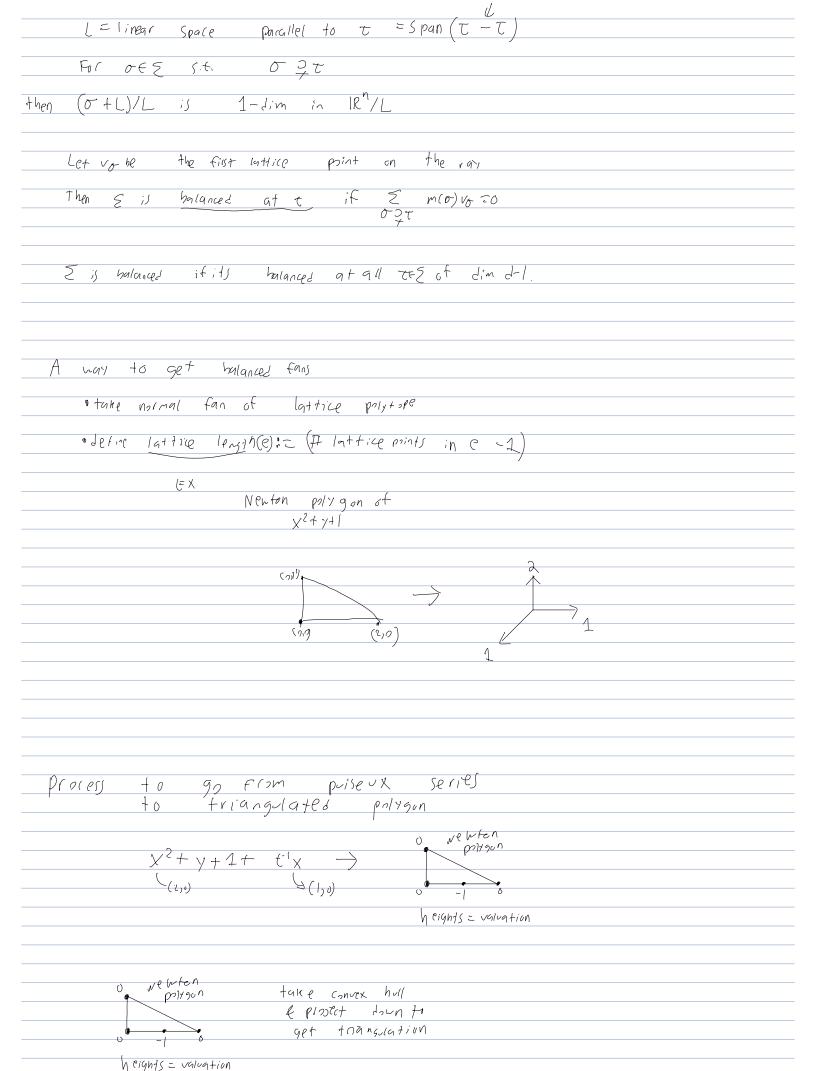
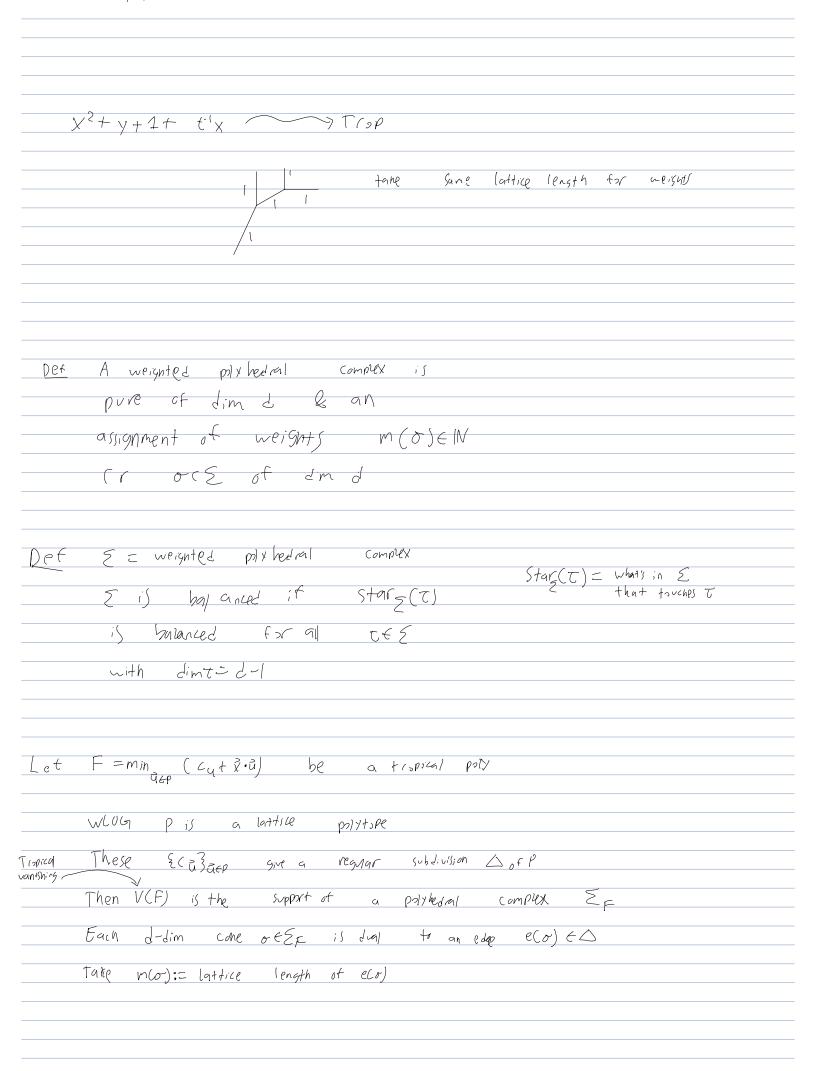
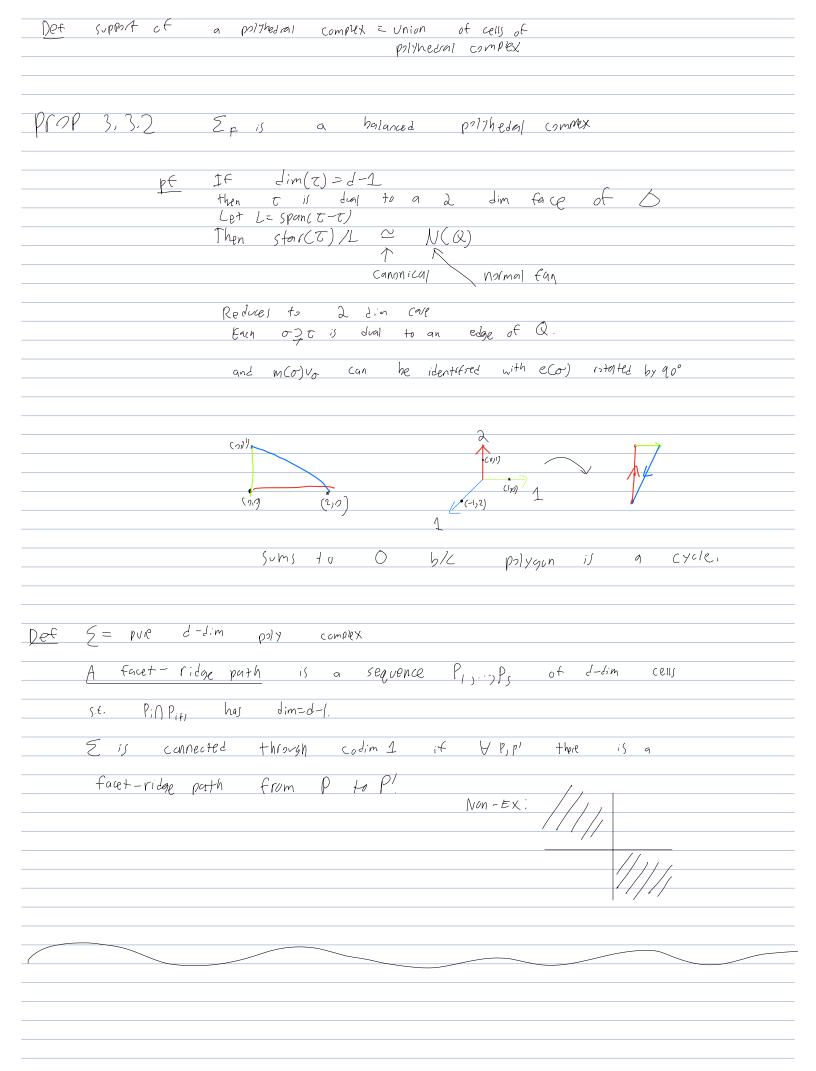
Structure theorem
IF X ET n is d-dim & irreducible
then Trop(X) is
- a pure rational polyhedial complex
Weighted & balanced new terms today
- connected through codim 2
Def A weighted fan is a fan E
which is pure of lim & & an
assignment of weights $m(\delta) \in \mathbb{N}$
for of E of dim d
EX ^
1
Can add vector to each o
(-15-2)
= 1 \(\lambda (\sigma) \nabla \sigma 20
called the Etis-fersion Condition
Canifa limb office ignition Coldenia
Def Let E be a weighted rational delin fan
for a cone t∈ 5 of dim d-1 minkowsk; d; fferese







What if XSTn, d-dim but not d=N-1?
Def If I is an ideal, then
Ass (I) = Gssociated prime
= EVQ; Q; E Primary of I }
(Primary Lecomp of I:= A Q; where JQ; is prime &; ireducible
& JQ; que d'stinct.
Assmin(I) = min elts in Ass(I) (by inclusion)
$mul+(P_{i,j},I):=l((S/Q_{i})_{P_{i}})$ ($S=K[x_{i}^{1},,x_{n}^{2}]$)
σ= tup -dim (ell in trop(VCI))
we relint(o)
$m \vee l + (\sigma) = \sum_{n \in (I)} m \vee l + (P_n; n_{\hat{n}}(I))$
$P \in Asy^{m,n} \left(i n_{\overline{w}}(I) \right)$